

Statistical Model Checking as Feedback Control

Anna Lukina, MSc

Vienna University of Technology

Supervisor: Radu Grosu

Co-supervisor: Ezio Bartocci

Analysis of CPS: Challenges

State-space explosion:

Open, physical part, uncertain and distributed

Model is generally not known:

Basic laws of physical part (or controller) only partially available

Current-state is generally not known:

Output is a function of only a subset of the state variables

How to steer towards rare events (RE) is a challenge:

Relation between RE and the CPS behavior is not known

Outline

- Learning
- State Estimation
- Control
- Future

Learning a DTMC: Input

Trace(s): 1, 1, 2, 3, 1, 2, 2, 2, 3, 3, 1, 2, 3, 3, 3, ...

Learning a DTMC: Output

T_H	X ₁	x_2	x_3	x_4
X_1	0.5	0.5	0	0
X_2	0.51	0	0.49	0
x_3	0.5	0	0	0.5
X_4	0	0	0	1

O_H	1	2	3	4
X_1	1	0	0	0
x_2	0	1	0	0
x_3	0	0	1	0
X_4	0	0	0	1

Learning a DTMC: Input

Trace(s): 1, 1, 2, 3, 1, 2, 2, 2, 3, 3, 1, 2, 3, 3, 3, ...

T_H	X ₁	x_2	x_3	X_4
X_{l}	0.25	0.25	0.25	0.25
x_2	0.25	0.25	0.25	0.25
x_3	0.25	0.25	0.25	0.25
x_4	0.25	0.25	0.25	0.25

O_H	1	2	3	4
X _l	0.5	0.5	0	0
x_2	0	0.5	0.5	0
x_3	0	0	0.5	0.5
X_4	0.5	0	0	0.5

Learning a DTMC: Output

T_H	X ₁	x_2	x_3	X_4
$\boldsymbol{X}_{\!1}$	0.84	0.16	0	0
x_2	0.50	0	0.24	0.26
x_3	0	0	0.52	0.48
x_4	0	0	0.52	0.48

$O_{\mathcal{H}}$	1	2	3	4
X _l	0.67	0.33	0	0
x_2	0	0	1	0
X_3	0	0	0	1
X_4	0	0	0	1

Discrete-time Markov Chain

Learning curve with Matlab HMM Toolbox

Given

$$\bullet \mathbf{P}(\mathbf{X}_{t+1} \mid X_t) = T_H, \mathbf{P}(X_1)$$

$$\bullet \mathbf{P}(y_t \mid X_t) = \mathbf{O}_H$$

•trace
$$y_{1,t+1} = y_1, ..., y_{t+1}$$

Compute
$$P(X_{t+1}|y_{1:t+1})$$

Initial distribution of the particles

Simulate the CPS

New configuration of the particles

Observe 'a' and resample the particles

Property Decomposition

A nested sequence of temporal logic properties:

$$\varphi_0 \Leftarrow \varphi_1 \Leftarrow \varphi_2 ... \Leftarrow \varphi_n = \varphi$$

A set of increasing levels: $0 = \ell_0 < \ell_1 < \ell_2 < ... < \ell_n = T$

Reaching a level implies having reached all the lower levels:

$$\mathbf{P}(\ell \ge \ell_i) = \mathbf{P}(\ell \ge \ell_i \mid \ell \ge \ell_{i-1})\mathbf{P}(\ell \ge \ell_{i-1}), \ \mathbf{P}(\ell \ge \ell_0) = 1, \ \boldsymbol{\gamma} = \mathbf{P}(\ell \ge \ell_n)$$

 The shorter trace satisfying more intermediate properties is given a higher score

The probability of the rare event:

$$\gamma = \prod_{i=0}^{n} \mathbf{P}(\ell \ge \ell_i \mid \ell \ge \ell_{i-1})$$

 Levels are chosen such that to minimize the relative variance of the final estimate

Adaptive Levels for Control (ISp)

Check the property of reaching state N within N-1 transitions

$$T_{H} = \begin{bmatrix} 1-p & p & 0 & \dots & 0 \\ 1-p & 0 & p & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 1-p & \dots & \dots & p & 0 \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

$$O_H = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & 1 & 0 \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

Adaptive Levels for Control (ISp)

Simulation with 10 particles for checking the property of reaching state 25

Future Research

- Testing on real case studies of CPS
- Efficient scoring for importance splitting
- Optimal derivation of the levels for importance splitting
- Importance sampling gives the beliefs and not actual states
- Optimal control from the belief-states

